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Figure 1: The proposed Neural Bootstrapping Method applied to electrostatics. Left: streamlines.
Right: warped cross-section showing the physically correct jump in the field. The neural approach
readily enables a 10243 effective resolution on a single NVIDIA A6000 GPU. Once trained, it takes
sub-milliseconds for the network to evaluate such a simulation [30].

Abstract

We present a highly scalable strategy for developing mesh-free neuro-symbolic
partial differential equation solvers from existing numerical discretizations found in
scientific computing. This strategy is unique in that it can be used to efficiently train
neural network surrogate models for the solution functions and the differential op-
erators, while retaining the accuracy and convergence properties of state-of-the-art
numerical solvers. This neural bootstrapping method is based on minimizing resid-
uals of discretized differential systems on a set of random collocation points with
respect to the trainable parameters of the neural network, achieving unprecedented
resolution and optimal scaling for solving physical and biological systems.

1 Introduction

Most modern physical, biological and engineering systems are described by partial differential
equations on irregular, often moving, boundaries. The difficulties in solving those problems stem
from approximating the equations while respecting the physically correct discontinuous nature of the
solution across the boundaries. Smoothing strategies are straightforward to design, but unfortunately
introduce unphysical characteristics in the solution, which lead to systemic errors.

Since the 1990s, artificial neural networks have been used for solving differential equations using two
general strategies: (i) mapping the algebraic operations of the discretized systems onto specialized
∗corresponding author.
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neural network architectures and minimizing the network energy, or (ii) treating the whole neural
network as the basic approximation unit, with parameters trained to minimize a specialized error
function that includes the differential equation itself as well as its boundary and initial conditions.

In the first category, neurons output the discretized solution values over a set of grid points, and
minimizing the network energy drives the neuronal values towards the solution at the mesh points.
The neural network energy is the residual of the finite discretization, summed over all neurons [22]. A
strong feature is the preservation of the finite discretization convergence; however, the computational
cost grows with increasing resolution and dimensionality. Early examples include [15, 10, 9].

The second strategy, proposed by Lagaris et al. [21], relies on the function approximation capabilities
of the neural networks. Encoding the solution everywhere in the domain within a neural network
offers a mesh-free, compact, and memory efficient surrogate model for the solution function, which
can be used in subsequent inference tasks. This method has recently re-emerged as the physics-
informed neural networks (PINNs) [35] and is widely used. Despite their advantages, these methods
lack the controllable convergence properties of traditional numerical discretizations, and are biased
towards the lower frequency features of the solutions [41, 34, 20].

Hybridization frameworks seek to combine the performance of neural network inference on modern
accelerated hardware with the guaranteed accuracy of traditional discretizations developed by the
scientific community. The hybridization efforts are algorithmic or architectural.

One important algorithmic method is the deep Galerkin method (DGM) [38], a neural network
extension of the mesh-free Galerkin method where the solution is represented as a deep neural
network rather than a linear combination of basis functions. Being mesh-free, it enables the solution
of high-dimensional problems by training the neural network model to satisfy the differential operator
and its initial and boundary conditions on a randomly sampled set of points, rather than on an
exponentially large grid. Although the number of points can be very large in higher dimensions,
the training is done sequentially on smaller batches of data points and second-order derivatives are
calculated by a scalable Monte Carlo method. Another important algorithmic method is the deep Ritz
[42]. It implements a deep neural network approximation of the trial function that is constrained by
numerical quadrature rules for the variational functional, followed by stochastic gradient descent.

Architectural hybridization is based on differentiable numerical linear algebra. One emerging
class involves implementing differentiable finite discretization solvers and embedding them in the
neural architectures that enable application of end-to-end differentiable gradient based optimization.
Differentiable solvers have been developed in JAX [7] for fluid dynamic problems, e.g. Phi-Flow
[17], JAX-CFD [19], and JAX-FLUIDS [2]. These methods are suitable for inverse problems where
an unknown field is modeled by the neural network, while the model influence is propagated by the
differentiable solver into a measurable residual [33, 12, 26]. We also note the classic strategy for
solving inverse problems, the adjoint method, to obtain the gradient of the loss without differentiation
across the solver [1]; however, deriving analytic expression for the adjoint equations can be tedious
or impractical. Other notable use of differentiable solvers is to model and correct for the solution
errors of finite discretizations [40], and learning and controlling differentiable systems [13, 16].

Neural networks are not only universal approximators of continuous functions, but also of nonlin-
ear operators [8]. Although this fact has been leveraged using data-driven strategies for learning
differential operators by many authors [25, 3, 24, 23], researchers have demonstrated the ability
of differentiable solvers to effectively train nonlinear operators without any data in a completely
physics-driven fashion, see section on learning inverse transforms in [33].

We propose a novel framework for solving PDEs based on deep neural networks, that enables lifting
any existing mesh-based finite discretization method off of its underlying grid and extend it into a
mesh-free and embarrassingly parallel method that can be applied to high dimensional problems on
unstructured random points. In addition, discontinuous solutions can be readily considered.

2 Problem statement

We illustrate our approach by considering a closed irregular interface (Γ) that partitions an interior
(Ω−) and an exterior (Ω+) subdomain (see figure 2). The coupled solution u± ∈ Ω± satisfy the
Helmholtz equation k±u± −∇ · (µ±∇u±) = f± with jump conditions [u] = α and [µ∂nu] = β,
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L = ||M�1Au � M�1b||22

Figure 2: Neural Bootstrapping Method (NBM). NBM kernels compute the residual contribution
at each collocation point per GPU thread. Kernel operations involve placing implicit cells at multi-
resolutions and calculating interface-cell crossings. Point-wise residuals are locally preconditioned
(M−1 matrix). A, b are the left/right-hand sides of the linear system obtained by finite discretization
method. u is the vector of solution values predicted by the neural network model at the stencil points.

where f±, µ± and k± are spatially varying coefficients. For simplicity, we consider Dirichlet
conditions at the boundary of a cubic computational domain.

This class of problems describes core components of diffusion dominated processes, where sharp
irregular interfaces regulate transport across regions with different properties. Examples include
Poisson-Boltzmann equation for describing electrostatic properties of biomolecules with jump in
dielectric permittivities [37, 27], in electroporation of cell aggregates with nonlinear membrane jump
conditions [29], or in epitaxial growth [28]. Other important applications are found in solidification
of multicomponent alloys in additive manufacturing [39, 6], directed self-assembly of diblock
copolymers for next generation lithography [14, 32, 5], and multiphase flows with phase change.

3 Scalable and Mesh-Freeing Neuro-Symbolic Differential Solver

We use neural networks as surrogates for the solution function that are iteratively adjusted to minimize
discretization residuals at a set of randomly sampled points and at arbitrary resolutions. The key
idea is that neural networks can be evaluated over vertices of any discretization stencils centered at
any point in the domain, effectively emulating any structured mesh without actually materializing
it. Therefore, we use neural networks to create mesh-free neural differential solvers from existing
mesh-based discretization methods . We call this the Neural Bootstrapping Method (NBM) (figure 2).

Numerical methods offer guaranteed accuracy and controllable convergence properties for the training
of neural network surrogate models. NBM offers a straightforward path for applying mesh-based
numerical methods on random points. This is an important capability for augmenting observational
data in the training pipelines. NBM is also a highly parallelizable strategy and the point-wise
nature of its kernels is ideally suited for GPU-accelerated computing. The difficult problem of
multi-GPU parallel solutions of differential systems is thus reduced to the much simpler task of data-
parallel training using existing machine learning frameworks. Data parallelism involves distributing
collocation points across multiple processors to compute gradient updates and then aggregating these
locally computed updates [36].

Here we bootstrap the numerical scheme proposed by [4] to solve the Helmholtz equation, hence
the loss function is with the coefficients described in figure 2. The operations in differentiable NBM
kernels are strictly local. NBM starts by placing implicit compute cells of a specified resolutions at
the collocation point. At discontinuities, two neural networks are used to represent the solution on
each side of Γ and a separate coarse mesh encapsulates a level-set function [31] that provides the
necessary geometric information for the numerical kernel and the preconditioner (denoted M−1).
The numerical kernel is applied on the compute cell where the solution values are evaluated by the
neural network. Each kernel contributes a local L2-norm residual rp = ||M−1Au−M−1b|| at one
point p. Preconditioning balances the relative magnitude of contributions from all points before
aggregating the residuals to form a global loss value. Finally, gradient based optimization methods
used in machine learning, e.g. Adam optimizer [18], are applied to adjust neural network parameters.
The automatic differentiation loop passes across the NBM kernels.
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4 Numerical results

4.1 Convergence and accuracy

We consider a sphere centered at the origin with radius 0.5 in a domain [−1, 1]3, a discontinuous
exact solution of u− = ez and u+ = cos(x) sin(y). In addition to the jump in solution, we consider
a jump in the variable diffusion coefficient to be µ− = y2 ln(x + 2) + 4 and µ+ = e−z . Table 1
reports convergence in the L∞-norm. Two neural networks were used to represent solutions inside
and outside the sphere with 5 hidden layers and 10 sine-activated neurons each, for a total of 982
trainable parameters.

Table 1: Convergence and overall time to solution for our JAX implementation, with 10, 000 epochs
in each case, and initial compilation time. Measurements are on a single NVIDIA A6000 GPU.

RMSE L∞ GPU Statistics

Nx,y,z Solution Order Solution Order t (sec/epoch) VRAM (GB)

23 3.7× 10−2 - 3.25× 10−1 - 0.0306 1.05
24 7.1× 10−3 2.38 1.10× 10−1 1.56 0.056 1.72
25 5.9× 10−3 0.27 8.36× 10−2 0.4 0.053 2.15
26 4.1× 10−3 0.53 6.44× 10−2 0.38 0.287 5.57
27 2.64× 10−3 0.64 3.53× 10−2 0.87 2.125 32.1

4.2 Time complexity and parallel scaling on GPU clusters

We simulate a Helmholtz problem with discontinuities on the Dragon geometry presented in [11]. We
consider a solution with jumps across the dragon’s surface and a spatially varying diffusion coefficient.
The results are shown in figure 1, with a L∞-error of 0.5 and RMSE of 0.06 after 1000 epochs on
a base resolution of 643 and implicitly refined onto multi-resolutions 1283, 2563, 5123. The neural
network pair have only 1 hidden layer with 100 sine-activated neurons, although investigating more
complex networks (transformers, symmetry preserving, etc.) would likely improve accuracy.

In table 2 we report scaling results on NVIDIA A100 GPUs at four base resolutions with three
levels of implicit refinement. We used a batchsize of 32 × 32 × 16 in all cases. At fixed number
of GPUs, training time scales linearly (i.e., optimal scaling) with the number of grid points. At a
fixed resolution, increasing the number of GPUs accelerates training roughly with epoch time ∼
1/
√

# GPUs, although the advantage is more effective at higher resolutions. Compile time increases
with resolution and decreases with number of GPUs. A maximum grid size of 10243 at multi-
resolutions 10243, 20483, 40963, 81923 was simulated on one NVIDIA DGX with 8 A100 GPUs.

Table 2: Scaling test. Time per epoch (sec) and JAX compile time for different configurations.

base resolution: 643 1283 2563 5123

A100 GPUs epoch compile epoch compile epoch compile epoch compile

1 0.908 9.027 6.960 9.288 55.287 12.164 438.45 49.020
2 0.657 7.575 5.893 7.823 47.360 10.045 378.98 39.815
4 0.405 7.480 3.629 7.863 28.261 9.129 226.73 27.405
8 0.384 7.983 3.340 7.901 26.799 9.154 204.88 20.632

5 Conclusion

We presented a neural bootstrapping method and applied it to the problem of solving elliptic PDEs
with discontinuities. NBM is a differentiable computing method that creates scalable and mesh-free
numerical methods from mesh-based finite discretizations. It represents the solution by training
neural networks using automatic differentiation of the discretized residual at collocation points. We
implemented the method using JAX and showed accuracy and parallel scaling in three dimensions.
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The work presented provides a systematic framework for creating neural-based solvers for partial
differential equations with potential jump conditions across sharp interfaces, which describe a plethora
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development of algorithms for multi-scale simulations to accelerate drug discovery and formulation
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