
JAX-DIPS: Neural bootstrapping of finite discretization methods and
application to elliptic problems with discontinuities

Pouria A. Mistani∗ †,a, Samira Pakravan†,b, Rajesh Ilangoa, Frederic Giboub

aNVIDIA Corporation, Santa Clara, CA 95051, USA
bUniversity of California, Santa Barbara, CA 93106-5070, USA

Abstract

We present a scalable strategy for development of mesh-free hybrid neuro-symbolic partial differen-
tial equation solvers based on existing mesh-based numerical discretization methods. Particularly,
this strategy can be used to efficiently train neural network surrogate models for the solution func-
tions and operators of partial differential equations while retaining the accuracy and convergence
properties of the state-of-the-art numerical solvers. The presented neural bootstrapping method
(hereby dubbed NBM) is based on evaluation of the finite discretization residuals of the PDE sys-
tem obtained on implicit Cartesian cells centered on a set of random collocation points with respect
to trainable parameters of the neural network. We apply NBM to the important class of elliptic
problems with jump conditions across irregular interfaces in three spatial dimensions. We show
the method is convergent such that model accuracy improves by increasing number of collocation
points in the domain. The algorithms presented here are implemented and released 1 in a software
package named JAX-DIPS (https://github.com/JAX-DIPS/JAX-DIPS), standing for differentiable
interfacial PDE solver. JAX-DIPS is purely developed in JAX, offering end-to-end differentiability
from mesh generation to the higher level discretization abstractions, geometric integrations, and
interpolations, thus facilitating research into use of differentiable algorithms for developing hybrid
PDE solvers.

Keywords: level-set method, free boundary problems, surrogate models, jump conditions,
differentiable programming, neural networks

1. Introduction

1.1. Problem statement

Consider a closed irregular interface (Γ) that partitions the computational domain (Ω) into
interior (Ω−) and exterior (Ω+) subdomains; i.e., Ω = Ω− ∪ Γ ∪ Ω+. We are interested in the
solutions u± ∈ Ω± to the following class of linear elliptic problems in x ∈ Ω±:

k±u± −∇ · (µ±∇u±) = f±, x ∈ Ω±

[u] = α, x ∈ Γ

[µ∂nu] = β, x ∈ Γ

Here f± = f(x ∈ Ω±) is the spatially varying source term, µ± = µ(x ∈ Ω±) are the diffusion
coefficients, and k± are the reaction coefficients in the two domains. We consider Dirichlet boundary
conditions in a cubic domain Ω = [−L/2,L/2]3.

This class of problems arise ubiquitously in describing diffusion dominated processes in physical
systems and life sciences where sharp and irregular interfaces regulate transport across regions with

∗Corresponding author: pmistani@nvidia.com
1Pending paper acceptance.
†These authors contributed equally to this work

Preprint submitted to Elsevier October 27, 2022

ar
X

iv
:2

21
0.

14
31

2v
1 

 [
m

at
h.

N
A

] 
 2

5 
O

ct
 2

02
2

https://github.com/JAX-DIPS/JAX-DIPS


different properties. Examples include Poisson-Boltzmann equation for describing electrostatic
properties of membranes, colloids and solvated biomolecules with jump in dielectric permittivities
[59, 47], electroporation of cell aggregates with nonlinear membrane jump conditions [49], epitaxial
growth in fabrication of opto-electronic devices where atomic islands grow by surface diffusion
of adatoms across freely moving interfaces [48], solidification of multicomponent alloys used for
manufacturing processes with free interfaces separating different phases of matter [62, 10], directed
self-assembly of diblock copolymers for next generation lithography [22, 53, 9], multiphase flows
with and without phase change, and Poisson-Nernst-Planck equations for electrokinetics. Much of
these processes are multiscale and the changes across interfaces must be mathematically modeled
and numerically solved as sharp surfaces. Smoothing strategies introduce unphysical characteristics
in the solution and lead to systemic errors.

1.2. Literature on relevant finite discretization methods

Several numerical methods have been proposed for accurate solution of this class of problems
based on explicit or implicit representation of the interface. Finite element methods rely on explicit
meshing of the surface that poses severe challenges [2, 12]. Implicit methods include the Immersed
Interface Method (IIM) [37] and its variants [1, 41, 20, 24] that rely on Taylor expansions of the
solution on both sides of the interface and modifying the local stencils to impose the jump condi-
tions. The main challenge is evaluating high order jump conditions and surface derivatives along
interface. Another method is the Ghost Fluid Method (GFM) [21] that was originally introduced
to approximate two-phase compressible flows and later applied to the Poisson problem with jump
conditions [42]. The basic idea is to define fictitious fluid regions across the discontinuities by
adding jump conditions to the true fluid. While GFM captures the normal jump in solution accu-
rately, the tangential jump is smeared. This was solved by the Voronoi Interface Method (VIM)
[25] by applying the GFM treatment on a local Voronoi mesh by adapting a local Cartesian mesh
which introduces numerical challenges. Several other approaches include the cut-cell method [16],
discontinuous Galerkin and eXtended Finite Element Method (XFEM) [38, 50, 3] among others.

In this work we bootstrap the level-set based finite volume method on Cartesian grids proposed
by Bochkov & Gibou (2020) [7]. This method is based on the idea of Taylor expansions in the
normal direction and employing one-sided least-square interpolations for imposing jump conditions.
In particular, this method offers second order accurate numerical solutions with first order accurate
gradients in the L∞-norm.

1.3. Literature on solving PDEs with neural networks

Since early 1990s, artificial neural networks have been used for solving partial differential equa-
tions by (i) mapping the algebraic operations of the discretized PDE systems onto specialized neural
network architectures and minimizing the network energy, or (ii) treating the whole neural network
as the basic approximation unit whose parameters are adjusted to minimize a specialized error
function that includes the differential equation itself with its boundary/initial conditions.

In the first category, neurons output the discretized solution values over a set number of grid
points and minimizing the network energy drives the neuronal values towards the solution of the
linear system at the mesh points. In this case, the neural network energy is the residual of the fi-
nite discretization method summed over all neurons of the network [36]. Although the convergence
properties of the finite discretization methods gaurantee and control quality of the obtained solu-
tions, the computational costs grow by increasing resolution and dimensionality. Interestingly, due
to regular and sparse structure of the finite discretizations, such locally connected neural network
PDE solvers have been implemented on VLSI analog CMOS circuits [23, 15, 14].

The second strategy proposed by Lagaris et al. [35] relies on the function approximation capa-
bilities of the neural networks. Encoding the solution everywhere in the domain within a neural
network offers a mesh-free, compact, and memory efficient surrogate model for the solution func-
tion that can be utilized in subsequent inference tasks. This method has recently re-emerged as the
physics-informed neural networks (PINNs) [56] and is widely used. Despite their advantages, these
methods lack controllable accuracy and convergence properties of finite discretization methods [34].

2



Pursuit of hybrid solvers aims at leveraging the performance gains of neural network inference
on modern accelerated hardware with the gauranteed accuracy of finite discretization methods. The
hybridization efforts are algorithmic or architectural.

One important algorithmic method is the deep Galerkin method (DGM) [60] that is a neural
network extension of the mesh-free Galerkin method where the solution is represented as a deep
neural network rather than a linear combination of basis functions. The mesh-free nature of DGM,
that stems from the underlying mesh-free Galerkin method, enables solving problems in higher
dimensions by training the neural network model to satisfy the PDE operator and its initial and
boundary conditions on a randomly sampled set of points rather than on an exponentially large grid.
Although the number of points is huge in higher dimensions, the algorithm can process training on
smaller batches of data points sequentially. Besides, second order derivatives in PDEs are calculated
by a Monte Carlo method that retain scaling to higher dimensions. Another important algorithmic
method is the deep Ritz method for solving variational problems [64] that implements a deep nerual
network approximation of the trial function that is constrained by numerical quadrature rule for
the variational functional, followed by stochastic gradient descent.

Architectural hybridization methods are based on differentiable numerical linear algebra. One
emerging class involves implementing differentiable finite discretization solvers and embedding them
in the neural network architectures that enable application of end-to-end differentiable gradient
based optimization methods. Recently, differentiable solvers have been developed in JAX [11] for
fluid dynamic problems, such as Phi-Flow [29], JAX-CFD [32], and JAX-FLUIDS [5]. These methods
are suitable for inverse problems where an unknown field is modeled by the neural network, while
the model influence is propagated by the differentiable solver into a measurable residual [54, 18, 44].
We also note the classic strategy for solving inverse problems is the adjoint method to obtain the
gradient of the loss without differentiation across the solver [4]; however, deriving analytic expression
for the adjoint equations is tedious, should be repeated after modification of the problem or its
loss function, and can become impractical for multiphysics problems. Other important utilities of
differentiable solvers are to model and correct for the solution errors of finite discretization methods
[63], learning and controling PDE systems [19, 28].

Neural networks are not only universal approximators of continuous functions, but also of non-
linear operators [13]. Although this fact has been leveraged using data-driven strategies for learning
differential operators by many authors [43, 6, 40, 39], current authors have demonstrated utility
of differentiable solvers to effectively train nonlinear operators without any data in a completely
physics-driven fashion, see section on learning the inverse transforms in [54]. In subsequent work
we will demonstrate how NBM can be used to train neural operators in a purely physics-driven
fashion.

In this work we propose a novel algorithm for solving PDEs based on deep neural networks by
lifting any existing mesh-based finite discretization method off of its underlying grid and extend it
into a mesh-free method that can be applied to high dimensional problems on unstructured random
points in an embarrasingly parallel fashion. In section 2 we present the neural bootstrapping
method, next we apply it to an advanced finite volume discretization scheme for elliptic problems
with jump conditions across irregular geometries in section 3. We show numerical results of the
proposed framework on interfacial PDE problems in section 4 and conclude with section 5.

2. Neural Bootstrapping Method (NBM)

Figure 1 illustrates schematic of the proposed algorithm. Neural networks are used as surrogates
for the solution function that are iteratively adjusted to minimize discretization residuals at a set of
randomly sampled points and at arbitrary resolutions. The key idea is that neural netwroks can be
evaluated over vertices of any discretization stencils centered at any point in the domain effectively
emulating the effect of any structured mesh without ever materializing the mesh. Therefore, we use
neural networks to bootstrap mesh based finite discretization (FD) methods to compile mesh free
numerical methods. Operations in differentiable NBM kernels are:

3



(a) NBM kernels compute residual contribution by each collocation point per thread. Kernel operations involve
considering implicit cells at different resolutions according to the bootstrapped finite discretization method.

(b) NBM outer training layout. Geometric information is managed by a mesh oracle that is often a structured
mesh at much lower resolution that stores the level-set funcion. The pointwise evaluations at each implicit cell is
locally preconditioned based on the geometry of the interfaces crossing the implicit cells. The training loop involves
automatic differentiation across the assembly of the linear system performed by the NBM kernels.

Figure 1: Neural Bootstrapping Method (NBM).

4



1. A compute cell is implicitly constructed at any input coordinate and at a specified resolution.
At the presence of discontinuities a coarse mesh encapsulates an interpolant for the level-set
function whose intersection with the implicit cell is calculated to obtain necessary geometric
information for the FD kernel and preconditioner.

2. FD kernel is applied on the compute cell where the solution values are evaluated by the neural
network. Each kernel contributes a local linear system L2-norm residual rp = ||Aup − b|| at a
point p.

3. Residulas are preconditioned using common preconditioners to balance relative magnitude of
contributions from different points and set them on equal level of importance before summing
to produce a global loss value.

4. Gradient based optimization methods used in machine learning are applied to adjust neural
network parameters. The automatic differentiation loop passes across the NBM kernels, see
figure 1b.

NBM is a simple technique to train neural networks with differential equations that offers several
capabilities:

• FD methods offer gauranteed accuracy and controllable convergence properties for the training
of neural network surrogate models. These are critical features for solving real-world complex
physical systems using neural networks.

• NBM offers a straightforward path for applying mesh-based FD methods on unstructured
random points. This is an important ability for augmenting observational data in the training
pipelines.

• The algorithm is highly parallelizable and is ideally suited for GPU-accelerated computing
paradigm.

• Multi-GPU parallel solution of PDE systems is reduced to the much simpler problem of
data-parallel training using existing machine learning frameworks. Data parallelism involves
distributing collocation points across multiple processors to compute gradient updates and
then aggregating these locally computed updates [58].

In the remainder of this manuscript we present details of applying NBM to solving elliptic
problems with discontinuities across irregular interfaces.

3. JAX-DIPS: Differentiable Interfacial PDE Solver

We developed an end-to-end differentiable library for solving the elliptic problems with discon-
tinuities in solution and solution gradient across irregular geometries. In JAX-DIPS, we bootstrap a
sophisticated and modern finite volume discretization method [7]. The geometries are represented
implicitly using the level-set function on a coarse mesh. We have implemented a uniform grid that
supports operations such as interpolations, interface advection, integrations over interfaces as well
as in domains. We describe the numerical algorithms for the level-set module and the elliptic solver
in this section.

3.1. Interpolation methods

An important building block is the ability to interpolate field values anywhere inside a grid cell
given the values on the grid points. In JAX-DIPS we currently support two types of interpolation
schemes that have been used in the context of the level set method for achieving second-order
accurate solutions by Min & Gibou (2007a)[46]: (i) trilinear interpolation, and (ii) quadratic non-
oscillatory interpolation.

5



3.1.1. Trilinear interpolation

In a unit grid cell, rescaled to C ∈ [0, 1]3, the trilinear interpolation at a point (x, y, z) ∈ C uses
the grid values on the parent cell vertices according to equation 11 of [46],

φ(x, y, z) =
∑

i,j,k∈0,1

φ(i, j, k)(−1)i+j+k(1− x− i)(1− y − j)(1− z − k)

Trilinear interpolation is based on polynomials of order 1 and offers accuracy of order 2 using 8
immediate vertices in a grid cell.

3.1.2. Quadratic non-oscillatory interpolation

Quadratic interpolation extends the trilinear interpolation by adding second order derivatives
of the interpolating field. This is needed because trilinear interpolation is sensitive to presence
of discontinuities and kinks which are abundant in the context of free boundary problems. The
extension reads

φ(x, y, z) =
∑

i,j,k∈0,1

φ(i, j, k)(−1)i+j+k(1− x− i)(1− y − j)(1− z − k)

− φxx
x(1− x)

2
− φyy

y(1− y)

2
− φzz

z(1− z)
2

where second order derviatives are sampled as the minimum value on the parent cell vertices to
enhance numerical stability of the interpolation

φxx = min
v∈vertices(C)

|Dxxφv|

φyy = min
v∈vertices(C)

|Dyyφv|

φzz = min
v∈vertices(C)

|Dzzφv|

The second order derivative operator is the familiar 5-point finite difference stencil.

3.2. Level-set method

The level-set method for solving free boundary problems was introduced by Osher & Sethian
(1988) [52]. The sharp interface is described as the zero contour of a signed-distance function, φ,
whose evolution is given by the advection equation according to some velocity field dictated by the
physics of the problem, v, that is defined over the moving boundary

∂φ

∂t
+ v · ∇φ = 0

This implicit representation of the moving boundaries resolves the need for the challenging task
of adapting the underlying grid to the yet-unknown discontinuities in the solution field. The com-
putational simplicity of using Cartesian grids for solving free boundary problems with irregular
geometries, as well as the ability to simulate freely moving discontinuities in a sharp-manner are
the two main advantages of the level-set method for this class of PDE problems. Besides implicit
representation of the free boundaries, the level-set function can be used to compute normal vectors
to the interface

n = ∇φ/|∇φ|

as well as the curvature of the interface

κ = ∇ · n

6



3.3. Geometric integration

3.3.1. Integration over 3D surfaces and volumes

We use uniform Cartesian grids. For computational cells that are crossed by the interface, i.e.
Vi,j,k ∩ Γ 6= 0, we use the geometric integrations proposed by Min & Gibou (2007b) [45]. In this
scheme each grid cell, C, is decomposed into five tetrahedra by the middle-cut triangulation [57]
(each cell is rescaled to [0, 1]3) that are described below (also see figure 1 (right) of [45]):

S1 ≡ conv(P000; P100; P010; P001) x = 0 face, y = 0 face, z = 0 face

S2 ≡ conv(P110; P100; P010; P111) x = 1 face, y = 1 face, z = 0 face

S3 ≡ conv(P101; P100; P111; P001) x = 1 face, y = 0 face, z = 1 face

S4 ≡ conv(P011; P111; P010; P001) x = 0 face, y = 1 face, z = 1 face

S5 ≡ conv(P111; P100; P010; P001) no face exposure

Hence each 3D grid cell is the union of 5 tetrahedra (simplices) C = ∪5
i=1Si, where each simplex is

identified by the pre-existing vertices of the grid cell (hence not creating new grid points). Given the
values of the level set function sampled at these vertices one can compute coordinates of intersection
points of the interface with each of the simplices Si ∩ Γ as well as the negative domain Si ∩ Ω−.
If P0, · · · , P3 are the four vertices of a simplex S, then Γ crosses an edge PiPj if and only if
φ(Pi)φ(Pj) < 0 and the intersection point across this edge is given by linear interpolation:

Pij = Pj
φ(Pi)

φ(Pi)− φ(Pj)
− Pi

φ(Pj)

φ(Pi)− φ(Pj)

Number of negative level-set values on the 4 (in 3D) tetrahedron vertices classifies the specific
configuration for intersection between simplex S and the interface through a variable η(φ, S) =
n(Pi|φ(Pi) < 0). In 3D, possible values are η = 0, 1, 2, 3, 4 that correspond to the four configurations
for the intersection cross section enumerated below:

• S ∩ Γ, see table 2 and figure 2 of [45]:

– η = 0: tetrahedron (S) is completely in positive domain with no intersection, S ∩Γ = ∅.
– η = 1: with a single vertex in negative domain and remaining three in positive domain,

the tetrahedron and interface have exactly 3 intersection points, the simplex S ∩ Γ has
exactly 3 vertices; cf., see figure 2 (center) of [45].

– η = 2: with two vertices in negative domain and remaining two in positive domain, the
cross section has four vertices that is splitted into two 3-vertex simplices; cf., see figure
2 (right) of [45].

– η = 3: with one vertex in positive domain and remaining three vertices in negative
domain, the cross section has 3 vertices that is computed by inverting the sign of the
level-set values on vertices and following the instruction for case η = 1.

– η = 4: tetrahedron is completely in negative domain with no intersection, S ∩ Γ = ∅.

• S ∩ Ω−, see table 4 and figure 4 of [45]:

– η = 0: tetrahedron is completely in positive domain with no intersection, S ∩ Ω− = ∅;
– η = 1: the intersection S ∩ Ω− is characterized by a single tetrahedron with 4 vertices

according to figure 4 (left) of [45]; i.e., one vertex is the negative level-set vertex of
the parent tetrahedron and three others are interpolated points over the three edges
pertaining to the negative vertex.

– η = 2: the intersection S ∩ Ω− is characterized by three tetrahedra with 12 vertices
according to figure 4 (center) of [45]. Note that there

– η = 3: the intersection S ∩ Ω− is characterized by three tetrahedra with 12 vertices
according to figure 4 (right) of [45].

7



– η = 4: tetrahedron is completely in negative domain and S ∩ Ω− = S;

Note that although we only need to allocate memory for at most 4 vertices to uniquely identify
S ∩ Γ, in JAX-DIPS we choose to pre-allocate memory for two 3-vertex simplex data structure per
S with a total of 6 vertices to separately store information for the cross section geometry. Similarly
for S ∩ Ω− we pre-allocate memory for a three 4-vertex simplex data structure per S. Altogether,
in the current implementation the geometric information of intersection points for each simplex S
is expressed in terms of 5 simplicies (2 three-vertex simplices for surface area and 3 four-vertex
simplicies for volume) using 18 points; this is an area for future optimization.

Having the intersection points, we compute surface and volume integrals of a given field over
the interface Γ and in negative domain Ω− as a summation of integrals over the identified simplices.
For each simplex (with n = 3 or n = 4 vertices) surface and volume integrals can be numerically
computed by having these vertices P0, · · · , Pn and the values of the field f at these vertices according
to ∫

S

fdx = vol(S) · f(P0) + · · ·+ f(Pn)

n+ 1

where

vol(S) =
1

n!

∣∣∣∣det

(P1 − P0)ê1 · · · (Pn − P0)ê1

...
. . .

...
(P1 − P0)ên · · · (Pn − P0)ên

∣∣∣∣
with êi being the ith Cartesian unit basis vector.

3.3.2. Cross sections of interface with grid cell faces

For the numerical discretizations considered in this work we also need the surface areas for
simplices created at the intersection of Γ with each of the 6 faces of a grid cell C. In JAX-DIPS for
each face we reuse two corresponding simplices exposed to that face that were calculated in the
geometric integrations module, explicitly:

• x = 0 face has contributions from (S1, S4)

• x = 1 face has contributions from (S2, S3)

• y = 0 face has contributions from (S1, S3)

• y = 1 face has contributions from (S2, S4)

• z = 0 face has contributions from (S1, S2)

• z = 1 face has contributions from (S3, S4)

For each face, we extract vertices from (Si, Sj)-pair that lie on the considered face and sum the
surface areas in (negative domain) contributed from each simplex on that face; therefore, the
portion of the face surface area in the positive domain is simply the complementing value area+ =
areaface − area−; i.e., this ensures sum of areas adds up to the exact face area in downstream
computations.

3.4. Neural network approximators for the solution

In 1987, Hecht and Nielson [26] applied an improved version of Kolmogorov’s 1957 superposition
theorem [33], due to Sprecher [61], to the field of neurocomputing and demonstrated that a 3-layer
feedforward neural network (one input layer with n inputs, one hidden layer with 2n+1 neurons, one
output layer) are universal approximators for all continuous functions from the n-dimensional cube
to a finite m-dimensional real vector space; i.e., f : [0, 1]n → Rm. Recently, Ismailov (2022) [30]
demonstrated existence of neural networks implementing discontinuous functions, however efficient
learning algorithms for such networks are not still available.

8



The solutions of interfacial PDE problems are discontinuous, with jumps appearing not only
in the solution but also in the solution gradient. In light of above considerations, we define two
separate neural networks to represent solution in Ω− and Ω+ regions:

u+ = N+(x) : R3 ∩ Ω+ → R u− = N−(x) : R3 ∩ Ω− → R

We use SIREN neural networks, where we implement fully connected feedforward architecture
with sin activation function and the output layer is a single linear neuron. Note that piecewise
differentiable nonlinearities such as the ReLU function are inappropriate choices for representing
solutions to differential equations. Weights and biases are initialized from a truncated normal
distribution with zero mean and unit variance.

Figure 2: Two neural networks are defined for the two regions of the computational domain.

Solution networks are evaluated on sampled points in the domain while the parameters of these
networks are optimized using the loss function. We define the loss function by the mean-squared-
error (MSE) of the residual of the discretized partial differential equation with jump conditions
derived in section 3.5 that is evaluated on the grid points:

L(u) = ||Aûθ(xijk ∈ Ω)− b||22

JAX-DIPS allows for computation of the gradient of the loss function using automatic differentiation,
i.e. ∇θL(u) where θ’s are network parameters. Therefore, our strategy is to leverage this capability
and use more sophisticated optimizers developed in the deep learning community (e.g. Adam [31],
etc) to minimize the afforementioned loss function with the desired solution vector u∗ of the PDE.

We emphasize the main motivation for using first order gradient based optimization algorithms
is their better memory efficiency that are suitable for large scale optimiziation problems with very
large number of parameters in the neural network model.

3.5. Approach I. Finite discretization method fused with regression-based extrapolation

For spatial discretizations at the presence of jump conditions we employ the numerical algorithm
proposed by Bochkov and Gibou (2020) [8]. This method produces second-order accurate solutions
and first-order accuracte gradients in the L∞-norm, while having a compact stencil that makes it

9



Figure 3: Notation used in this paper. Close to the interface where finite volumes are crossed by the
interface, there are extra degrees of freedom (open circles) that are extrapolations of solutions from each
domain to the opposite domain. Jump conditions are implicitly encoded in these extrapolated values.

a good candidate for parallelization. Moreover, treatment of the interface jump conditions do not
introduce any augmented variables, this preserves the homogeneous structure of the linear system.
Most importantly, jump conditions only appear on the right-hand-side of the discretization and do
not pollute the matrix term, this is beneficial for accelerating the solver. Here we use a background
uniform 2D grid only for presentation of the finite volume discretization equations; we will not use
this grid in the actual implementation but instead assume a local 3D cell around random points
spanning in the domain during optimization.

At points where the finite volumes are crossed by Γ we have∑
s=−,+

∫
Ωs∩Vi,j

ksusdΩ−
∑
s=−,+

∫
Ωs∩∂Vi,j

µs∂nsusdΓ =
∑
s=−,+

∫
Ωs∩Vi,j

fsdΩ +

∫
Γ∩Vi,j

[µ∂nu]dΓ

following standard treatment of volumetric integrals and using central differencing for derivatives
we obtain in 2D (with trivial 3D extension)

∑
s=−,+

ksi,ju
s
i,j |Vsi,j | −

∑
s=−,+

(
µsi− 1

2 ,j
Asi− 1

2 ,j

usi−1,j − usi,j
∆x

+ µsi+ 1
2 ,j
Asi+ 1

2 ,j

usi+1,j − usi,j
∆x

+

µsi,j− 1
2
Asi,j− 1

2

usi,j−1 − usi,j
∆y

+ µsi,j+ 1
2
Asi,j+ 1

2

usi,j+1 − usi,j
∆y

)
=
∑
s=−,+

fsi,j |Vsi,j |+
∫

Γ∩Vi,j
βdΓ +O(max(∆x,∆y)D)

where D is the problem dimensionality. Note that far from interface either s = − (for x ∈ Ω−) or
s = + (for x ∈ Ω+) is retained. This is automatically considered through zero values for sub-volumes
|V+
i,j | and |V−i,j | as well as their face areas. Note that µ−i−1/2,j (or µ+

i−1/2,j) corresponds to the value

of diffusion coefficient at the middle of segment A−i−1/2,j (or A+
i−1/2,j) respectively, same is true for

other edges as well. However, there are extra degrees of freedom on grid points whose finite volumes
are crossed by the interface; i.e., see double circles in figure 3. [8] derived analytical expressions for
the extra degrees of freedom (u+ in Ω− and u− in Ω+) in terms of the original degrees of freedom
(u− in Ω− and u+ in Ω+) as well as the jump conditions, this preserves the original Nx×Ny system
size. The basic idea is to extrapolate the jump at grid point from jump condition at the projected

10



point onto the interface using a Taylor expansion: u+
i,j−u

−
i,j = [u]rpri,j +δi,j(∂nu

+(rpri,j)−∂nu−(rpri,j)).

The unknown value (u−i,j or u+
i,j) is obtained based on approximation of the normal derivatives (i.e.

∂nu
±(rpri,j)) which are computed using a least squares calculation on neighboring grid points that

are in the fast-diffusion region (referred to as “Bias Fast”) or in the slow diffusion region (referred
to as “Bias Slow”). This makes two sets of rules for unknown values u±i,j .

In two dimensions and on uniform grids, the gradient operator at the grid cell (i, j) that is
crossed by an interface is estimated by a least squares solution given by

(∇u±)i,j = D±i,j


ui−1,j−1 − u±i,j
ui,j−1 − u±i,j

...
ui+1,j+1 − u±i,j

 D±i,j =
(
XT
i,jW

±
i,jXi,j

)−1(
W±i,jXi,j

)T
and

W±i,j =


ω±i,j(−1,−1)

ω±i,j(0,−1)
. . .

ω±i,j(1, 1)

 Xi,j =



−hx −hy
0 −hy
hx −hy
−hx 0

0 0
hx 0
−hx hy

0 hy
hx hy


and

ω±i,j(p, q) =

{
1 (p, q) ∈ N±i,j
0 else

(1)

In this case, D±i,j is a 2× 9 matrix and we denote each of its 2× 1 columns with d±i,j,p,q

D±i,j =
[

d±i,j,−1,−1 d±i,j,0,−1 d±i,j,1,−1 d±i,j,−1,0 d±i,j,0,0 d±i,j,1,0 d±i,j,−1,1 d±i,j,0,1 d±i,j,1,1
]

The least square coefficients are then obtained by dot product of normal vector with these columns

c±i,j,p,q = nTi,jd
±
i,j,p,q

and normal derivative can be computed (noting that c±i,j = −
∑

(p,q)∈N±
i,j
c±i,j,p,q)

∂nu
±(rproji,j ) = c±i,ju

±
i,j +

∑
(p,q)∈N±

i,j

c±i,j,p,qu
±
i+p,j+q +O(h)

At this point we can define a few intermediate variables at each grid point to simplify the
presentation of the method,

ζ±i,j,p,q := δi,j
[µ]

µ∓
c±i,j,p,q ζ±i,j := −

∑
(p,q)∈N±

i,j

ζ±i,j,p,q

γ±i,j,p,q :=
ζ±i,j,p,q

1± ζ±i,j
γ±i,j := −

∑
(p,q)∈N±

i,j

γ±i,j,p,q

where the set of neighboring grid points are

N±i,j = {(p, q) : p = −1, 0, 1, q = −1, 0, 1, (p, q) 6= (0, 0), xi+p,j+q ∈ Ω±}

and δi,j is the signed distance from xi,j that is computed from the level-set function φ(x)

δi,j =
φ(xi,j)

|∇φ(xi,j)|

11



• Rules based on approximating ∂nu
+(rpri,j):

u−i,j =

{
ui,j xi,j ∈ Ω−

ui,j(1− γ−i,j)−
∑

(p,q)∈N−
i,j
γ−i,j,p,qui+p,j+q − (α+

δi,jβ
µ+ )(1− γ−i,j) xi,j ∈ Ω+ (2)

u+
i,j =

{
ui,j(1− ζ−i,j)−

∑
(p,q)∈N−

i,j
ζ−i,j,p,qui+p,j+q + α+ δi,j

β
µ+ xi,j ∈ Ω−

ui,j xi,j ∈ Ω+
(3)

It is useful to cast this in the form of matrix kernel operations through defining intermediate tensors:

Γi,j :=

 γ−i−1,j+1 γ−i,j+1 γ−i+1,j+1

γ−i−1,j γ−i,j γ−i+1,j

γ−i−1,j−1 γ−i,j−1 γ−i+1,j−1

 , ζi,j :=

 ζ−i−1,j+1 ζ−i,j+1 ζ−i+1,j+1

ζ−i−1,j ζ−i,j ζ−i+1,j

ζ−i−1,j−1 ζ−i,j−1 ζ−i+1,j−1


Ui,j :=

 ui−1,j+1 ui,j+1 ui+1,j+1

ui−1,j ui,j ui+1,j

ui−1,j−1 ui,j−1 ui+1,j−1

 , N±i,j :=

 ω±i,j(−1, 1) ω±i,j(0, 1) ω±i,j(1, 1)

ω±i,j(−1, 0) 0 ω±i,j(1, 0)

ω±i,j(−1,−1) ω±i,j(0,−1) ω±i,j(1,−1)


where N− is a masking filter that passes the values in the negative neighborhood of node (i, j).

We also introduce the Hadamard product � between two identical matrices that creates another
identical matrix with each entry being elementwise products. Moreover, double contraction of two
tensors A and B is defined by A : B =

∑
A� B which is a scalar value and equals the sum of all

entries of the Hadamard product of the tensors; i.e., note A : A is square of Frobenius norm of A.
Using these notations, the substitution rules read

u−i,j =

{
ui,j xi,j ∈ Ω−(
1 + Γ−i,j : N−i,j

)
ui,j −

(
Γ−i,j �N−i,j

)
: Ui,j − (α+ δi,j

β
µ+ )
(
1 + Γ−i,j : N−i,j

)
xi,j ∈ Ω+

(4)

u+
i,j =

{(
1 + ζ−i,j : N−i,j

)
ui,j −

(
ζ−i,j �N−i,j

)
: Ui,j + α+ δi,j

β
µ+ xi,j ∈ Ω−

ui,j xi,j ∈ Ω+
(5)

• Rules based on approximating ∂nu
−(rpri,j):

u−i,j =

{
ui,j xi,j ∈ Ω−

ui,j(1− ζ+
i,j)−

∑
(p,q)∈N+

i,j
ζ+
i,j,p,qui+p,j+q − α− δi,j

β
µ− xi,j ∈ Ω+ (6)

u+
i,j =

{
ui,j(1− γ+

i,j)−
∑

(p,q)∈N+
i,j
γ+
i,j,p,qui+p,j+q + (α+ δi,j

β
µ− )(1− γ+

i,j) xi,j ∈ Ω−

ui,j xi,j ∈ Ω+
(7)

in matrix notation we have

u−i,j =

{
ui,j xi,j ∈ Ω−(
1 + ζ+

i,j : N+
i,j

)
ui,j −

(
ζ+
i,j �N+

i,j

)
: Ui,j − α− δi,j β

µ− xi,j ∈ Ω+
(8)

u+
i,j =

{(
1 + Γ+

i,j : N+
i,j

)
ui,j −

(
Γ+
i,j �N+

i,j

)
: Ui,j + (α+ δi,j

β
µ− )

(
1 + Γ+

i,j : N+
i,j

)
xi,j ∈ Ω−

ui,j xi,j ∈ Ω+

(9)
The overall algorithm is summarized in Algorithm 1.

12



1: procedure Bias Slow
2: if Γ ∩ Ci,j = ∅ then

3: B±i,j =

0 0 0
0 1 0
0 0 0

 ; r±i,j = 0

4: else
5: if µ−i,j > µ+

i,j then
6: if φi,j ≥ 0 then

7: B+
i,j =

0 0 0
0 1 0
0 0 0

 ; r+
i,j = 0

8: B−i,j =

 −γ−i,j,−1,1 −γ−i,j,0,1 −γ−i,j,1,1
−γ−i,j,−1,0 1− γ−i,j −γ−i,j,1,0
−γ−i,j,−1,−1 −γ−i,j,0,−1 −γ−i,j,1,−1

 ; r−i,j = −(αproji,j +δi,j
βproj
i,j

µ+
proj

)(1−γ−i,j)

9: else

10: B+
i,j =

 −ζ−i,j,−1,1 −ζ−i,j,0,1 −ζ−i,j,1,1
−ζ−i,j,−1,0 1− ζ−i,j −ζ−i,j,1,0
−ζ−i,j,−1,−1 −ζ−i,j,0,−1 −ζ−i,j,1,−1

 ; r+
i,j = αproji,j + δi,j

βproj
i,j

µ+
proj

11: B−i,j =

0 0 0
0 1 0
0 0 0

 ; r−i,j = 0

12: else
13: if φi,j ≥ 0 then

14: B+
i,j =

0 0 0
0 1 0
0 0 0

 ; r+
i,j = 0

15: B−i,j =

 −ζ+
i,j,−1,1 −ζ+

i,j,0,1 −ζ+
i,j,1,1

−ζ+
i,j,−1,0 1− ζ+

i,j −ζ+
i,j,1,0

−ζ+
i,j,−1,−1 −ζ+

i,j,0,−1 −ζ+
i,j,1,−1

 ; r−i,j = αproji,j + δi,j
βproj
i,j

µ−
proj

16: else

17: B+
i,j =

 −γ+
i,j,−1,1 −γ+

i,j,0,1 −γ+
i,j,1,1

−γ+
i,j,−1,0 1− γ+

i,j −γ+
i,j,1,0

−γ+
i,j,−1,−1 −γ+

i,j,0,−1 −γ+
i,j,1,−1

 ; r+
i,j = (αproji,j + δi,j

βproj
i,j

µ−
proj

)(1− γ+
i,j)

18: B−i,j =

0 0 0
0 1 0
0 0 0

 ; r−i,j = 0

Algorithm 1: Bias Slow approximation of the non-existing solution value on a grid point based on existing solution
values in its neighborhood. The notation is used for u±i,j = B±i,j : Ui,j + r±i,j .

13



3.6. Approach II. Finite discretization method fused with neural extrapolation

We point out that although in approach I we used a regression-based method to impose the
jump conditions on the grid points around the interface, it is possible to evaluate the neural network
models as interpolation and extrapolation functions within the finite discretization scheme. Using
the neural network models for solutions, we are able to evaluate extrapolations of the solution
functions in a banded region around the interface as illustrated in figure 2. Starting from the jump
conditions, for points on the interface, x ∈ Γ, we have

u+ − u− = α

µ+∂nu
+ − µ−∂nu− = β

and after Taylor expansion in the normal direction we obtain on the adjacent grid points (i, j)

u+
i,j − u

−
i,j = [u]rpri,j + δi,j(∂nu

+(rpri,j)− ∂nu
−(rpri,j)) (10)

which explicitly incorporates the jump condition in the solutions. To incorporate the jump condition
in fluxes we can rewrite either of the normal gradients in terms of the other

∂nu
+(rpri,j) =

µ−

µ+
∂nu

−(rpri,j) +
β

µ+

∂nu
−(rpri,j) =

µ+

µ−
∂nu

+(rpri,j)−
β

µ−

which leads to two relationships among predictions of the two neural networks at each grid point
in the banded extrapolation region

u+
i,j − u

−
i,j = α(rpri,j) + δi,j

((µ−
µ+
− 1
)
∂nu

−(rpri,j) +
β(rpri,j)

µ+

)
(11)

u+
i,j − u

−
i,j = α(rpri,j) + δi,j

((
1− µ+

µ−
)
∂nu

+(rpri,j) +
β(rpri,j)

µ−

)
(12)

Note that we are representing solution functions, û±(r), with neural networks where computing
the normal derivatives is trivial using automatic differentiation of the network along the normal
directions. In contrast to finite discretization methods, solutions at off-grid points is readily available
by simply evaluating the neural network function at any desired points. Note that we can compute
the projected location on the interface starting from each grid point (i, j) using the level-set function:

rprojij = rij − δi,jni,j

In the second approach, the loss function remains as before, except the unknown u± values
are derived using equations 11–12, instead of computing a regression-based extrapolation function
based on the points in the neighborhood of interface cells:

L =

∣∣∣∣∣∣∣∣ ∑
s=−,+

ksi,ju
s
i,j |Vsi,j | −

∑
s=−,+

(
µsi− 1

2 ,j
Asi− 1

2 ,j

usi−1,j − usi,j
∆x

+ µsi+ 1
2 ,j
Asi+ 1

2 ,j

usi+1,j − usi,j
∆x

+

µsi,j− 1
2
Asi,j− 1

2

usi,j−1 − usi,j
∆y

+ µsi,j+ 1
2
Asi,j+ 1

2

usi,j+1 − usi,j
∆y

)
−
∑
s=−,+

fsi,j |Vsi,j | −
∫

Γ∩Vi,j
βdΓ

∣∣∣∣∣∣∣∣2
2

However, there is a major downside with this approach for training because the automatic
differentiation has to be applied on the network once more that effectively amounts to compute
second-order derivatives of the network. This slows down convergence, and the time-to-solution
increases with square of depth of the neural network while in the regression-based method the cost
grows linearly in the network depth by restricting to only first order automatic differentiation.

14



3.7. Optimization scheme

3.7.1. Preconditioners are ideal network regularizers

Finite discretization methods lead to solving a linear algebraic system with gaurantees on con-
vergence and accuracies. The geometric irregularities and fine-grain details of the system around
interfaces often lead to bad condition number for the linear system, which can be remedied by
applying preconditioners. Intuitively, condition number is caused by a separation of scales for geo-
metric lengthscales or material properties that underly the solution patterns. One of the strengths
of the presented approach is to readily enable usage of preconditioners for training neural network
surrogate models.

Preconditioners are a powerful technique to accelerate convergence of tradional numerical linear
algebraic solvers. Given a poorly conditioned linear system Ax = b one can obtain an equivalent
system Âx̂ = b̂ with accelerated convergence rate when using iterative gradient based methods. For
the conjugate gradient method convergence iteration is proportional to

√
κ(A) where κ(A) is the

condition number of matrix A. Preconditioning is achieved by mapping the linear system with a
nonsingular matrix M into a new space M−1Ax = M−1b where M−1A has more regular spread
of eigenvalues, hence a better condition number. The precondition matrix M should approximate
A−1 such that |I −M−1A| < 1. The simplest choice is the Jacobi prconditioner which amounts to
using the diagonal part of A as the preconditioner, M = diag(A). Note that the diagonal term is
locally available at each point and it is straightforward to parallelize.

In this work we use the Jacobi pre-conditioner. Basically, every element of the left-hand-side
(Au) and right-hand-side (b) vectors are divided by the coefficient of the diagonal term of the matrix
given by:

aii =
∑
s=−,+

(
ksi,i|Vsi,i|+ (µsi− 1

2 ,i
Asi− 1

2 ,i
+ µsi+ 1

2 ,i
Asi+ 1

2 ,i
)/∆x+ (µsi,i− 1

2
Asi,i− 1

2
+ µsi,i+ 1

2
Asi,i+ 1

2
)/∆y

)
Note that for memory efficiency we never explicitly compute the matrix, instead we compute the
effect of matrix product of Au.

3.7.2. Learning rate scheduling

First order methods are slow but cheap; second order methods are fast but expensive. In
JAX-DIPS we primarily utilize first order optimization methods such as Adam [31]. Second order
methods such as Newton or BFGS certainly offer convergence in less iterations but require much
more memory. Traditionally used GMRES or Conjugate Gradient methods for sparse linear systems
are somewhere between first order and second order optimization methods that are based on building
basis vectors by computing gradients that are conjugate to each other pTj Api = 0 and will converge
to the solution in at most n steps; i.e., at most the solution vector is spanned in the full basis. We
found that starting from a zero guess for the solution it is important to start from a large learning
rate and gradually decay the learning rate in a process of exponential annealing. For this purpose,
we use the exponential decay scheduler provided by Optax [27] to control the learning rate in the
Adam optimizer:

rk = r0α
k/T

where rk is the learning rate at step k of optimization, α < 1 is the decay rate, and T is the decay
count-scale. By default, we set T = 100, α = 0.975, starting from an initial value of r0 = 10−2

and clip gradients by maximum global gradient norm (to a value 1) [55] before applying the Adam
updates in each step. We note a larger decay rate, e.g. α = 0.98, leads to small oscillations after
10000 steps and although similar levels of accuracy can be achieved at much less iterations, here
we report results with the more robust decay rate.

3.7.3. Domain switching optimization scheme

The linear system suffers from worse condition number in the domain with more variability
in diffusion coefficient, or where diffusion coefficient is larger; i.e., the fast region. This leads

15



to regionally unbalanced solution error where the overall error is systematically lopsided by the
faster diffusion region. We found this problem can be improved by interleaving region-specific
optimization epochs in the training pipeline, where only one of the networks is updated based on
the loss computed in its region. See Algorithm 2 for details of the algorithm.

1: procedure Domain Switching Optimization
2: for epoch in 0 · · · N do
3: region = Region(epoch)
4: if region > 0 then
5: if µ− > µ+ then
6: optimize u−NN in Ω− given fixed u+

NN

7: else
8: optimize u+

NN in Ω+ given fixed u−NN
9:

10: if region == 0 then
11: optimize both networks in Ω− ∪ Ω+

12:

13: if region < 0 then
14: if µ− < µ+ then
15: optimize u−NN in Ω− given fixed u+

NN

16: else
17: optimize u+

NN in Ω+ given fixed u−NN
18:

19: procedure Region(epoch)
20: if mode == whole region→ fast region then
21: region = epoch % τ

22: if mode == fast region→ whole region→ slow region then
23: region = τ//2− epoch % τ

Algorithm 2: Domain switching method. Switching interval is τ .

3.7.4. Multi-GPU parallelization with model parallel training

The NBM is embarrasingly parallel and residual evaluation at each point is independent from
other points. Therefore, multi-GPU parallelization does not involve inter-GPU communication for
evaluating the residuals per point. We partition the training points and distribute them along with
copies of neural network parameters among multiple GPUs to compute gradient updates per batch.
Then we aggregate these updates by averaging the values on different GPUs. The updates are then
broadcasted and model parameters are updated on each device.

The ability to batch over grid points is one of the key enabling factors for reaching higher
resolutions and higher dimensions. With NBM it is straightforward to scale finite discretization
methods on GPU clusters. It is important to randomly shuffle and redistribute the points among
the batches at the beginning of each epoch, we found without shuffling the accuracy deteriorates
and increasing resolution does not yield better solutions; see figure 4.

4. Numerical Results

We consider examples for solution to elliptic problems of the form

k±u± −∇ · (µ±∇u±) = f±, x ∈ Ω±

[u] = α, x ∈ Γ

[µ∂nu] = β, x ∈ Γ

16



Figure 4: Effect of shuffling on the star example of 4.2; (left) without shuffling and (right) with shuffling.
Shuffling has to be applied on the batches when training on batched data points.

Using different features of JAX-DIPS one can compose solvers with different training configu-
rations; i.e., single/multi-resolution, single/multi-batch, and single/multi-GPU, and domain alter-
nating training. Moreover, the neural extrapolation method discussed in section 3.6 provides an
alternative solver. Below we implement and compare numerical accuracy and performance of these
strategies.

4.1. Accuracy on spherical interface: single-resolution, single batch, single GPU

We use a single uniform grid and train on all the points in a single batch. We consider a sphere
φ(x) =

√
x2 + y2 + z2 − 0.5 centered in a box Ω : [−1, 1]3 with the exact solution

u−(x, y, z) = ez, φ(x) < 0

u+(x, y, z) = cos(x) sin(y), φ(x) ≥ 0

and variable diffusion coefficients

µ−(x, y, z) = y2 ln(x+ 2) + 4 φ(x) < 0

µ+(x, y, z) = e−z φ(x) ≥ 0

that imply variable source terms

f−(x, y, z) = −[y2 ln(x+ 2) + 4]ez φ(x) < 0

f+(x, y, z) = 2 cos(x) sin(y)e−z φ(x) ≥ 0

The network has 5 hidden layers with 10 neurons in each layer using sine activation functions.
Table 1 reports convergence results for the solution in the L∞-norm and root-mean-squared-error
of the solution. Order of convergence, denoted by p, is computed by doubling the number of grid
points in every dimension and measuring the L∞ error of solution and its gradient over all the grid
points in the domain:

err(2h)

err(h)
= 2p → p = log2

(
err(2h)

err(h)

)
h = min(hx, hy, hz)

17



Figure 5: Loss evolution with epochs for the sphere of 16 × 16 × 16 grid (left) and different accuracy
measures, RMSE and L∞, at 5 different resolutions (right).

Table 1: Convergence and timings for the sphere example averaged over 10, 000 epochs. Timings include the initial
compilation time. Measurements are on a single NVIDIA A6000 GPU. The regression-based method has 5 hidden
layers with 10 neurons each, overall 928 trainable parameters.

RMSE L∞ GPU Statistics

Nx,y,z Solution Order Solution Order t (sec/epoch) VRAM (GB)

23 3.7× 10−2 - 3.25× 10−1 - 0.0306 1.05
24 7.1× 10−3 2.38 1.10× 10−1 1.56 0.056 1.72
25 5.9× 10−3 0.27 8.36× 10−2 0.4 0.053 2.15
26 4.1× 10−3 0.53 6.44× 10−2 0.38 0.287 5.57
27 2.64× 10−3 0.64 3.53× 10−2 0.87 2.125 32.1

4.2. Accuracy on star interface: single GPU, domain switching, neural extrapolation, and batching

We use a pair of fully connected feedforward neural networks, each composed of 1 hidden layer
and 100 neurons with sine activation function, followed by an output layer with 1 linear neuron.
There are a total of 1, 002 trainable parameters in the model. We consider a star-shaped interface
with inner and outer radii ri = 0.151 and re = 0.911 that is immersed in a box Ω : [−1, 1]3 described
by the level-set function

φ(x) =
√
x2 + y2 + z2 − r0

(
1 +

( x2 + y2

x2 + y2 + z2

)2 3∑
k=1

βk cos
(
nk
(

arctan
(y
x

)
− θk

)))
with the parameters

r0 = 0.483,

n1

β1

θ1

 =

 3
0.1
0.5

 ,

n2

β2

θ2

 =

 4
−0.1
1.8

 ,

n3

β3

θ3

 =

 7
0.15

0



18



(a) Illustration of numerical solution and absolute error on a cross section of the domain.

(b) Streamlines of solution gradient for (left) the surrogate neural model colored by model solution value, (right)
exact streamlines colored by exact solution values.

Figure 6: The neural network surrogate model trained on a 1283 grid using a single NVIDIA A6000 GPU.

19



Considering an exact solution

u−(x, y, z) = sin(2x) cos(2y)ez, φ(x) < 0

u+(x, y, z) =

[
16
(y − x

3

)5 − 20
(y − x

3

)3
+ 5
(y − x

3

)]
ln(x+ y + 3) cos(z), φ(x) ≥ 0

and the diffusion coefficient

µ−(x, y, z) = 10

[
1 + 0.2 cos(2π(x+ y)) sin(2π(x− y)) cos(z)

]
φ(x) < 0

µ+(x, y, z) = 1 φ(x) ≥ 0

Table 2: Convergence in solution of the star geometry using the single-resolution regression-based solver with domain
switching. We report L∞-norm error as well as root-mean-squared-error (RMSE) of the solution field evaluated
everywhere in the domain. Timings are averaged over 10, 000 epochs in each case and include the initial compilation
time for jaxpressions. The neural network pair have 1 hidden layer each with 100 neurons, overall 1, 002 trainable
parameteres. Domain switching scheme follows the whole region→ fast region→ fast region sequence.

RMSE L∞ GPU Statistics

Nx,y,z Solution Order Solution Order t (sec/epoch) VRAM (GB)

regress ∂n
23 1.36× 10−1 - 1.27 - 0.019 0.98
24 7.98× 10−2 0.77 8.23× 10−1 0.63 0.022 1.01
25 4.36× 10−2 0.87 3.85× 10−1 1.10 0.032 1.30
26 2.43× 10−2 0.84 2.28× 10−1 0.76 0.200 3.7

neural ∂n
23 2.17× 10−1 - 2.89 - 0.0259 0.93
24 1.34× 10−1 0.70 1.66 0.80 0.0408 1.19
25 5.68× 10−2 1.24 8.17× 10−1 1.02 0.0712 2.96
26 2.77× 10−2 1.03 3.94× 10−1 1.05 0.334 13.6

Table 3: Convergence in solution of the star geometry using the multi-resolution regression-based solver with batching.
We use a multi-resolution training protocol that refines to 4 levels at each collocation point. Batch size is the minimum
of 64× 64× 32 and number of collocation points, which ensures memory saturation at 30 GB.

regress ∂n RMSE L∞ GPU Statistics

Nx,y,z Solution Order Solution Order t (sec/epoch) VRAM (GB)

23 1.05× 10−1 - 1.29 - 0.0225 1.27
24 5.52× 10−2 0.93 6.22× 10−1 1.05 0.0411 1.27
25 2.44× 10−2 1.18 2.66× 10−1 1.23 0.1814 8.3
26 2.33× 10−2 0.07 2.24× 10−1 0.25 1.889 29.6
27 8.62× 10−2 −1.88 3.80× 10−1 −0.76 9.649 29.7

4.3. Time complexity and parallel scaling on GPU clusters

We adopt the problem setup presented in 4.2, however with a considerably more challenging
geometry of the Dragon presented in [17]. In this case we used the signed-distance function produced
by SDFGen, and initiated an interpolant based on its values.

The results are shown in figure 9, with a L∞-error of 0.5 and RMSE of 0.06 after 1000 epochs on
a base resolution of 643 and implicitly refined onto multi-resolutions 1283, 2563, 5123. The neural

20



(a) Illustration of three dimensional interface used (left), and µ± on the 32× 32× 32 grid (right).

(b) Loss evolution with epochs for the star of 64× 64× 64 grid using domain switching training (left), and decrease
in error by increasing resolutions (right).

Figure 7: The neural network model trained with different configurations and resolutions.

21



Figure 8: Illustration of exact and numerical solutions (top row) and gradient streamlines (bottom row)
on a 64 × 64 × 64 grid.

22



network pair have only 1 hidden layer with 100 sine-activated neurons, although investigating more
complex networks (transformers, symmetry preserving, etc.) would likely improve accuracy.

In table 4 we report scaling results on NVIDIA A100 GPUs at four base resolutions with
three levels of implicit refinement. We used a batchsize of 32 × 32 × 16 in all cases. At fixed
number of GPUs, training time scales linearly (i.e., optimal scaling) with the number of grid
points. At a fixed resolution, increasing the number of GPUs accelerates training roughly with
epoch time ∼ 1/

√
# GPUs, although the advantage is more effective at higher resolutions. Compile

time increases with resolution and decreases with number of GPUs. A maximum grid size of 10243

at multi-resolutions 10243, 20483, 40963, 81923 was simulated on one NVIDIA DGX with 8 A100
GPUs. The results are shown in figure 9.

Table 4: Scaling test. Time per epoch (sec) and JAX compile time for different configurations.

base resolution: 643 1283 2563 5123

A100 GPUs epoch compile epoch compile epoch compile epoch compile

1 0.908 9.027 6.960 9.288 55.287 12.164 438.45 49.020
2 0.657 7.575 5.893 7.823 47.360 10.045 378.98 39.815
4 0.405 7.480 3.629 7.863 28.261 9.129 226.73 27.405
8 0.384 7.983 3.340 7.901 26.799 9.154 204.88 20.632

5. Conclusion

We developed a differentiable GPU-based framework for solving partial differential equations
with jump conditions across irregular interfaces in three spatial dimensions. Solutions in each
domain are represented by a simple multi-layer perceptron (MLP) and Cartesian grid points of
the underlying numerical discretization scheme are treated as collocation points for optimizing the
unknown parameters of the MLPs.

There are many improvements for JAX-DIPS that we will pursue for future development:

• More sophisticated neural architectures can be considered in JAX-DIPS by adding to the model
class of the library. We only considered MLPs, however in recent years there have been a
plethora of deep neural network models that have shown great promise such as transformers,
graph neural networks, etc. An important class are symmetry preserving neural networks.

• Extension to adaptive grids with enhanced resolutions closer to the interfaces while coarsening
the grid cells in the bulk.

• Training neural operators that can map from different geometries for discontinuities to the
solution field is of utmost importance for developing time-evolving systems. The NBM is
applicable for physics-driven training of neural operators for elliptic problems with freely
moving boundaries, we will present this work in a future work.

• We are exploring utility of NBM for solving inverse-PDE problems as well as parameterized
PDEs.

Acknowledgement

This work has been partially funded by ONR N00014-11-1-0027

23



(a) Geometry of the dragon and gradient streamlines, colored by solution values.

(b) Jump in solution and its gradient are accurately captured by the surrogate neural network model.

Figure 9: The NBM approach enables a 10243 effective resolution on a single NVIDIA A6000 GPU. Once
trained, it takes sub-milliseconds for the network to evaluate such a simulation that enables near-real-time
digital twins for physical systems [51].

24



References

[1] L. Adams and Z. Li. The immersed interface/multigrid methods for interface problems. SIAM
Journal on Scientific Computing, 24(2):463–479, 2002.

[2] I. Babuška. The finite element method for elliptic equations with discontinuous coefficients.
Computing, 5(3):207–213, 1970.

[3] T. Belytschko, N. Moës, S. Usui, and C. Parimi. Arbitrary discontinuities in finite elements.
International Journal for Numerical Methods in Engineering, 50(4):993–1013, 2001.

[4] J. Berg and K. Nyström. Neural network augmented inverse problems for pdes. arXiv preprint
arXiv:1712.09685, 2017.

[5] D. A. Bezgin, A. B. Buhendwa, and N. A. Adams. Jax-fluids: A fully-differentiable high-
order computational fluid dynamics solver for compressible two-phase flows. arXiv preprint
arXiv:2203.13760, 2022.

[6] K. Bhattacharya, B. Hosseini, N. B. Kovachki, and A. M. Stuart. Model reduction and neural
networks for parametric pdes. arXiv preprint arXiv:2005.03180, 2020.

[7] D. Bochkov and F. Gibou. Solving elliptic interface problems with jump conditions on cartesian
grids. Journal of Computational Physics, 407:109269, 2020.

[8] D. Bochkov and F. Gibou. Solving elliptic interface problems with jump conditions on cartesian
grids. Journal of Computational Physics, 407:109269, 2020.

[9] D. Bochkov and F. Gibou. A non-parametric shape optimization approach for solving inverse
problems in directed self-assembly of block copolymers. arXiv preprint arXiv:2112.09615, 2021.

[10] D. Bochkov, T. Pollock, and F. Gibou. Sharp-interface simulations of multicomponent alloy
solidification. arXiv preprint arXiv:2112.08650, 2021.

[11] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,
A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transforma-
tions of Python+NumPy programs, 2018.

[12] J. H. Bramble and J. T. King. A finite element method for interface problems in domains with
smooth boundaries and interfaces. Advances in Computational Mathematics, 6(1):109–138,
1996.

[13] T. Chen and H. Chen. Universal approximation to nonlinear operators by neural networks with
arbitrary activation functions and its application to dynamical systems. IEEE Transactions
on Neural Networks, 6(4):911–917, 1995.

[14] L. O. Chua and L. Yang. Cellular neural networks: Applications. IEEE Transactions on
circuits and systems, 35(10):1273–1290, 1988.

[15] L. O. Chua and L. Yang. Cellular neural networks: Theory. IEEE Transactions on circuits
and systems, 35(10):1257–1272, 1988.

[16] R. Crockett, P. Colella, and D. T. Graves. A cartesian grid embedded boundary method for
solving the poisson and heat equations with discontinuous coefficients in three dimensions.
Journal of Computational Physics, 230(7):2451–2469, 2011.

[17] B. Curless and M. Levoy. A volumetric method for building complex models from range images.
In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques,
pages 303–312, 1996.

[18] N. Dal Santo, S. Deparis, and L. Pegolotti. Data driven approximation of parametrized pdes
by reduced basis and neural networks. Journal of Computational Physics, 416:109550, 2020.

25



[19] F. de Avila Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum, and J. Z. Kolter. End-to-
end differentiable physics for learning and control. Advances in neural information processing
systems, 31, 2018.

[20] R. E. Ewing, Z. Li, T. Lin, and Y. Lin. The immersed finite volume element methods for the
elliptic interface problems. Mathematics and Computers in Simulation, 50(1-4):63–76, 1999.

[21] R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher. A non-oscillatory eulerian approach to
interfaces in multimaterial flows (the ghost fluid method). Journal of computational physics,
152(2):457–492, 1999.

[22] K. Galatsis, K. L. Wang, M. Ozkan, C. S. Ozkan, Y. Huang, J. P. Chang, H. G. Monbouquette,
Y. Chen, P. Nealey, and Y. Botros. Patterning and templating for nanoelectronics. Advanced
Materials, 22(6):769–778, 2010.

[23] D. Gobovic and M. Zaghloul. Design of locally connected cmos neural cells to solve the steady-
state heat flow problem. In Proceedings of 36th Midwest Symposium on Circuits and Systems,
pages 755–757. IEEE, 1993.

[24] Y. Gong, B. Li, and Z. Li. Immersed-interface finite-element methods for elliptic interface prob-
lems with nonhomogeneous jump conditions. SIAM Journal on Numerical Analysis, 46(1):472–
495, 2008.

[25] A. Guittet, M. Lepilliez, S. Tanguy, and F. Gibou. Solving elliptic problems with discontinu-
ities on irregular domains–the voronoi interface method. Journal of Computational Physics,
298:747–765, 2015.

[26] R. Hecht-Nielsen. Kolmogorov’s mapping neural network existence theorem. In Proceedings
of the international conference on Neural Networks, volume 3, pages 11–14. IEEE Press New
York, NY, USA, 1987.

[27] M. Hessel, D. Budden, F. Viola, M. Rosca, E. Sezener, and T. Hennigan. Optax: composable
gradient transformation and optimisation, in jax!, 2020.

[28] P. Holl, V. Koltun, and N. Thuerey. Learning to control pdes with differentiable physics. arXiv
preprint arXiv:2001.07457, 2020.

[29] P. Holl, V. Koltun, K. Um, and N. Thuerey. phiflow: A differentiable pde solving framework
for deep learning via physical simulations. In NeurIPS Workshop, volume 2, 2020.

[30] V. Ismailov. A three layer neural network can represent any multivariate function, 2020.

[31] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[32] D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner, and S. Hoyer. Machine learn-
ing–accelerated computational fluid dynamics. Proceedings of the National Academy of Sci-
ences, 118(21), 2021.

[33] A. N. Kolmogorov. On the representation of continuous functions of many variables by su-
perposition of continuous functions of one variable and addition. In Doklady Akademii Nauk,
volume 114, pages 953–956. Russian Academy of Sciences, 1957.

[34] A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby, and M. W. Mahoney. Characterizing possible
failure modes in physics-informed neural networks. Advances in Neural Information Processing
Systems, 34:26548–26560, 2021.

[35] I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial neural networks for solving ordinary and
partial differential equations. IEEE transactions on neural networks, 9(5):987–1000, 1998.

26



[36] H. Lee and I. S. Kang. Neural algorithm for solving differential equations. Journal of Compu-
tational Physics, 91(1):110–131, 1990.

[37] R. J. LeVeque and Z. Li. The immersed interface method for elliptic equations with discontin-
uous coefficients and singular sources. SIAM Journal on Numerical Analysis, 31(4):1019–1044,
1994.

[38] A. J. Lew and G. C. Buscaglia. A discontinuous-galerkin-based immersed boundary method.
International Journal for Numerical Methods in Engineering, 76(4):427–454, 2008.

[39] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-
kumar. Fourier neural operator for parametric partial differential equations. arXiv preprint
arXiv:2010.08895, 2020.

[40] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandku-
mar. Neural operator: Graph kernel network for partial differential equations. arXiv preprint
arXiv:2003.03485, 2020.

[41] Z. Li, T. Lin, and X. Wu. New cartesian grid methods for interface problems using the finite
element formulation. Numerische Mathematik, 96(1):61–98, 2003.

[42] X.-D. Liu, R. P. Fedkiw, and M. Kang. A boundary condition capturing method for poisson’s
equation on irregular domains. Journal of computational Physics, 160(1):151–178, 2000.

[43] L. Lu, P. Jin, and G. E. Karniadakis. Deeponet: Learning nonlinear operators for identify-
ing differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

[44] P. Y. Lu, S. Kim, and M. Soljačić. Extracting interpretable physical parameters from spa-
tiotemporal systems using unsupervised learning. Physical Review X, 10(3):031056, 2020.

[45] C. Min and F. Gibou. Geometric integration over irregular domains with application to level-set
methods. Journal of Computational Physics, 226(2):1432–1443, 2007.

[46] C. Min and F. Gibou. A second order accurate level set method on non-graded adaptive
cartesian grids. Journal of Computational Physics, 225(1):300–321, 2007.

[47] M. Mirzadeh, M. Theillard, and F. Gibou. A second-order discretization of the nonlinear
Poisson-Boltzmann equation over irregular geometries using non-graded adaptive Cartesian
grids. Journal of Computational Physics, 230(5):2125–2140, Mar. 2011.

[48] P. Mistani, A. Guittet, D. Bochkov, J. Schneider, D. Margetis, C. Ratsch, and F. Gibou.
The island dynamics model on parallel quadtree grids. Journal of Computational Physics,
361:150–166, 2018.

[49] P. Mistani, A. Guittet, C. Poignard, and F. Gibou. A parallel voronoi-based approach for
mesoscale simulations of cell aggregate electropermeabilization. Journal of Computational
Physics, 380:48–64, 2019.

[50] N. Moës, J. Dolbow, and T. Belytschko. A finite element method for crack growth without
remeshing. International journal for numerical methods in engineering, 46(1):131–150, 1999.

[51] T. Müller. tiny-cuda-nn, 4 2021.

[52] S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: Algorithms
based on hamilton-jacobi formulations. Journal of computational physics, 79(1):12–49, 1988.

[53] G. Y. Ouaknin, N. Laachi, K. Delaney, G. H. Fredrickson, and F. Gibou. Level-set strategy
for inverse dsa-lithography. Journal of Computational Physics, 375:1159–1178, 2018.

27



[54] S. Pakravan, P. A. Mistani, M. A. Aragon-Calvo, and F. Gibou. Solving inverse-pde problems
with physics-aware neural networks. Journal of Computational Physics, 440:110414, 2021.

[55] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks,
2012.

[56] M. Raissi, P. Perdikaris, and G. Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019.

[57] J. F. Sallee. The middle-cut triangulations of the n-cube. SIAM Journal on Algebraic Discrete
Methods, 5(3):407–419, 1984.

[58] C. J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein, R. Frostig, and G. E. Dahl. Measuring
the effects of data parallelism on neural network training. arXiv preprint arXiv:1811.03600,
2018.

[59] K. A. Sharp and B. Honig. Calculating total electrostatic energies with the nonlinear poisson-
boltzmann equation. Journal of Physical Chemistry, 94(19):7684–7692, 1990.

[60] J. Sirignano and K. Spiliopoulos. Dgm: A deep learning algorithm for solving partial differential
equations. Journal of Computational Physics, 375:1339–1364, 2018.

[61] D. A. Sprecher. On the structure of continuous functions of several variables. Transactions of
the American Mathematical Society, 115:340–355, 1965.

[62] M. Theillard, F. Gibou, and T. Pollock. A sharp computational method for the simulation of
the solidification of binary alloys. Journal of scientific computing, 63(2):330–354, 2015.

[63] K. Um, R. Brand, Y. R. Fei, P. Holl, and N. Thuerey. Solver-in-the-loop: Learning from
differentiable physics to interact with iterative pde-solvers. Advances in Neural Information
Processing Systems, 33:6111–6122, 2020.

[64] B. Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving
variational problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

Appendix A. Solving interface problems with physics-informed neural networks

Physics-informed neural networks (PINNs) are based on minimizing a penalty function on eval-
uated on a point cloud, where the actual PDE constitutes the residual and automatic differentiation
is used to compute the spatial derivaties in the PDE. Each of the two relations 11–12 offers an extra
residual term that can be used to penalize the loss function in PINNs

Linterface =

∣∣∣∣∣∣∣∣u+
i,j − u

−
i,j − α(rpri,j)− δi,j

((µ−
µ+
− 1
)
∂nu

−(rpri,j) +
β(rpri,j)

µ+

)∣∣∣∣∣∣∣∣2
2

(A.1)

or

Linterface =

∣∣∣∣∣∣∣∣u+
i,j − u

−
i,j − α(rpri,j)− δi,j

((
1− µ+

µ−
)
∂nu

+(rpri,j) +
β(rpri,j)

µ−

)∣∣∣∣∣∣∣∣2
2

(A.2)

Far from interface, the usual procedure for physics-informed neural networks is applicable,
namely,

Lbulk =

∣∣∣∣∣∣∣∣k±u± −∇ · (µ±∇u±)− f±
∣∣∣∣∣∣∣∣2

2

Lboundary =

∣∣∣∣∣∣∣∣u(rbc)− û(rbc)

∣∣∣∣∣∣∣∣2
2

hence, the overall loss function for this class of problems shall be

L = Lbulk + Lboundary + Linterface

28


	1 Introduction
	1.1 Problem statement
	1.2 Literature on relevant finite discretization methods
	1.3 Literature on solving PDEs with neural networks

	2 Neural Bootstrapping Method (NBM)
	3 JAX-DIPS: Differentiable Interfacial PDE Solver
	3.1 Interpolation methods
	3.1.1 Trilinear interpolation
	3.1.2 Quadratic non-oscillatory interpolation

	3.2 Level-set method
	3.3 Geometric integration
	3.3.1 Integration over 3D surfaces and volumes
	3.3.2 Cross sections of interface with grid cell faces

	3.4 Neural network approximators for the solution
	3.5 Approach I. Finite discretization method fused with regression-based extrapolation
	3.6 Approach II. Finite discretization method fused with neural extrapolation
	3.7 Optimization scheme
	3.7.1 Preconditioners are ideal network regularizers
	3.7.2 Learning rate scheduling
	3.7.3 Domain switching optimization scheme
	3.7.4 Multi-GPU parallelization with model parallel training


	4 Numerical Results
	4.1 Accuracy on spherical interface: single-resolution, single batch, single GPU
	4.2 Accuracy on star interface: single GPU, domain switching, neural extrapolation, and batching
	4.3 Time complexity and parallel scaling on GPU clusters

	5 Conclusion
	References
	Appendix  A Solving interface problems with physics-informed neural networks

